54 research outputs found

    Compact nonlinear model of an implantable electrode array for spinal cord stimulation (SCS)

    Get PDF
    We describe the construction of a model of the electrode-electrolyte interface and surrounding electrolyte in the case of a platinum-electrode array intended for spinal-cord stimulation (SCS) application. We show that a finite, two dimensional, resistor array provides a satisfactory model of the bulk electrolyte, and we identify the complexity required of that resistor array. The electrode-electrolyte interface is modelled in a fashion suitable for commonly-available, compact simulators using a nonlinear extension of the model of Franks et al. that incorporates diodes and a memristor. The electrode-electrolyte interface model accounts for the nonlinear current-overpotential characteristic and diffusion-limiting effects. We characterise a commercial, implantable, electrode array, fit the model to it, and show that the model successfully predicts subtle operational characteristics

    MRI Safe Electrodes for Spinal Cord Stimulation (SCS)

    Get PDF
    Adding decoy filars and non-therapeutic decoy electrodes to therapeutic filars can divert and dissipate a significant fraction of captured RF energy in a distributed way along the lead. Simulated worst case local SAR values have been reduced by a factor of ten for lead lengths ranging from 200 mm to 1200 mm

    Cause of pulse artefacts inherent to the electrodes of neuromodulation implants

    Get PDF
    The current pulses delivered through platinum electrodes by medical implants to recruit neurones give rise to slowly-decaying voltage tails, called "artefacts''. These tails make measurement of evoked potentials following the pulses very difficult. We present evidence to show that in a typical clinical scenario these tails are mostly caused by concentration gradients of species induced in the electrical double layer adsorbed onto the surface of both stimulating and passive electrodes. A compact model is presented that allows simulation of these artefacts. The model is verified against measurements made in saline. This shows that electrode artefacts are an intrinsic property of the conductive electrodes of a lead

    Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons—A Model Study

    Get PDF
    Even if a stimulus pattern moves at a constant velocity across the receptive field of motion-sensitive neurons, such as lobula plate tangential cells (LPTCs) of flies, the response amplitude modulates over time. The amplitude of these response modulations is related to local pattern properties of the moving retinal image. On the one hand, pattern-dependent response modulations have previously been interpreted as 'pattern-noise', because they deteriorate the neuron's ability to provide unambiguous velocity information. On the other hand, these modulations might also provide the system with valuable information about the textural properties of the environment. We analyzed the influence of the size and shape of receptive fields by simulations of four versions of LPTC models consisting of arrays of elementary motion detectors of the correlation type (EMDs). These models have previously been suggested to account for many aspects of LPTC response properties. Pattern-dependent response modulations decrease with an increasing number of EMDs included in the receptive field of the LPTC models, since spatial changes within the visual field are smoothed out by the summation of spatially displaced EMD responses. This effect depends on the shape of the receptive field, being the more pronounced - for a given total size - the more elongated the receptive field is along the direction of motion. Large elongated receptive fields improve the quality of velocity signals. However, if motion signals need to be localized the velocity coding is only poor but the signal provides – potentially useful – local pattern information. These modelling results suggest that motion vision by correlation type movement detectors is subject to uncertainty: you cannot obtain both an unambiguous and a localized velocity signal from the output of a single cell. Hence, the size and shape of receptive fields of motion sensitive neurons should be matched to their potential computational task

    The Giant Lavas of Kalkarindji: rubbly pāhoehoe lava in an ancient continental flood basalt province

    Get PDF
    The Kalkarindji continental flood basalt province of northern Australia erupted in the mid Cambrian (c. 511-505 Ma). It now consists of scattered basaltic lava fields, the most extensive being the Antrim Plateau Volcanics (APV) - a semi-continuous outcrop (c. 50,000 km2) reaching a maximum thickness of 1.1 km. Cropping out predominately in the SW of the APV, close to the top of the basalt succession, lies the Blackfella Rockhole Member (BRM). Originally described as ‘basaltic agglomerate’ the BRM has, in recent years, been assumed to be explosive tephra of phreatomagmatic origin, thus providing a potent vehicle for volatile release to the upper atmosphere. Our detailed field investigations reveal that this basaltic agglomerate is, in reality, giant rubble collections (15 - 20 m thick) forming the upper crusts of rubbly pāhoehoe lava units 25 - 40 m thick; covering 18,000 - 72,000 km2 and an estimated volume of 1,500 - 19,200 km3. These flows, rheologically but not chemically, distinct from the majority of Kalkarindji lavas, indicate a fundamental change in eruption dynamics. A low volatile content, induced high amounts of pre-eruptive degassing causing super-cooling and an increase in crystal nucleation and viscosity. A more viscous lava and a consistently faster rate of effusion (analogous to that of Laki, Iceland) created the flow dynamics necessary to disturb the lava crust to the extent seen in the BRM. Volatile release is estimated at 1.65 x 104 - 2.11 x 105 Tg total CO2 at a rate of 867 Tg a- 1 and 9.07 x 103 - 1.16 x 105 Tg SO2 at 476.50 Tg a- 1. These masses accounted for 0.5% of Cambrian atmospheric conditions whilst limiting factors reduced the effect of volatile delivery to the atmosphere, thus any potential global impact caused by these flows alone was minimal

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Understanding rare and common diseases in the context of human evolution

    Full text link

    Battery performance assessment method and apparatus

    No full text
    The invention provides a battery performance assessment apparatus which includes two terminal connectors configured to electrically connect the assessment apparatus to the positive and negative terminals of a battery being assessed, and a response measurement system configured to measure the terminal voltage and current of the battery when supplied with at least one alternating test current having a frequency less than the impedance transition frequency associated with the battery being assessed and preferably between 100uHz and 1mHz, and a processor in communication with the response measurement system and being configured to output a performance assessment indicator for the battery being assessed by calculating at least one impedance for the battery using terminal voltage and current measurements communicated by the response measurement system

    Measures of Dosage for Spinal-Cord Electrical Stimulation: Review and Proposal

    Get PDF
    This manuscript proposes an electrical definition of therapeutic dose for spinal-cord systems used for the treatment of chronic pain, analogous to the pharmacological definition. Dose-response relationships are fundamental to pharmacology, radio-therapy, and other treatments, but have never been properly established for neuromodulation. This manuscript offers a robust measure of dose, pre-requisite to establishing a reliable and repeatable dose-response relationship. The new definition, enabled by the system transresistance obtained from measurement of evoked action potentials, recognizes the mechanism of action of spinal cord stimulation (SCS), and should improve acceptance of the therapy as compared to pharmacological treatments which are currently used more frequently for the treatment of chronic pain. The new definition suggests methods for personalization and standardization of the dose in SCS, and is potentially generalizable to all neuromodulation therapies in which nervous tissue is excited including sacral nerve stimulation (SNS), vagal nerve stimulation (VNS) and deep-brain stimulation (DBS). Formulas are provided, and applied using patient data. Powerful conclusions are drawn from application of the new measure
    corecore